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Abstract 

Bi-modal truncated count distributions are frequently observed in aggregate surveys and ratings when respondents are 
mixed in their opinion. They also arise in censored count data, where the highest category might create an additional 
mode. The Poisson distribution is the most common distribution for fitting count data and can be modified to achieve 
mixtures of truncated Poisson distributions. However, it is suitable only for modeling equi-dispersed distributions and is 
limited in its ability to capture bi-modality. The Conway-Maxwell-Poisson (CMP) distribution is a two-parameter 
generalization of the Poisson distribution that allows for over- and under-dispersion. While the CMP is much more 
flexible, it still cannot capture bi-modality.  In this work, we propose a mixture of CMPs for capturing a wide range of 
truncated count data, which can exhibit unimodal behavior (with equi-, under- or over-dispersion) as well as bimodal 
behaviour. We present methods for estimating the parameters of a mixture of two CMP distributions using an EM 
approach. Our approach introduces a special two-step optimization within the M-step to estimate multiple parameters. The 
methods are illustrated using simulated and real data. 
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1. Introduction and Motivation 

Count data arise in many fields, including transportation, marketing, healthcare and biology among many 
others. The most commonly used distribution for modeling count data is the Poisson distribution. One of the 
major features of the Poisson distribution is that the mean and variance of the random variable are equal. 
However, in real life data often exhibit over- or under-dispersion. In such cases, the Poisson distribution often 
does not provide good approximations. For over-dispersed data, the negative Binomial model is a popular 
choice [2]. Other over-dispersion models include Poisson mixtures [3]. However, these models are not 
suitable for under-dispersion. A more flexible alternative that captures both over- and under-dispersion is the 
Conway-Maxwell-Poisson (CMP) distribution. The CMP is a two-parameter generalization of the Poisson 
distribution which also includes the Bernoulli and geometric distributions as special cases [4]. The CMP 
distribution has been used in a variety of count-data applications and has been extended methodologically in 
various directions (see a survey of CMP-based methods and applications in [5]). 
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This paper is motivated by the need for a flexible distribution for modeling count data that arise in 
truncated environments, and in particular, where the empirical distributions exhibit bimodal behavior. One 
example is when only a censored version of the data is available. For example, when the data provider 
combines the highest values into a single “larger or equal to” bin, it often creates another mode at the last bin. 

Real data in the above contexts can take a wide range of shapes, from symmetric to left- or right-skewed 
and from unimodal to bimodal. Count data arising from ratings or Likert-scale† questions exhibit bimodality 
when the respondents have mixed opinions. For example, respondents might have been asked to rate a certain 
product on a ten-point scale. If some respondents like the item considerably and others do not, we would find 
two modes in the resulting data.  

In addition to bimodality, data from different groups of respondents might be under dispersed or over 
dispersed, due to various causes (e.g., dependence between responders’ answers can cause over-dispersion). 
Under such setups, mixtures of two CMP distributions are likely to fit the data much better than a mixture of 
two Poisson distributions. While the CMP distribution has been the basis for various models, to the best of our 
knowledge, it was not extended to mixtures. 

1.1. An Example 

The Heritage Provider Network is a healthcare provider who launched a $3,000,000 contest with the 
following goal: “Identify patients who will be admitted to a hospital within the next year, using historical 
claims data.”‡ While the contest is much broader, for simplicity we look at one of the main outcome variables, 
i.e., the distribution of the number of days spent in the hospital (for claims received in a two-year period)§. 
The censoring at 15 days of hospitalization creates a second mode in the data, as can be seen in Figure 1. 

 

 

Figure 1: Distribution of numbers of days at the hospital. Data reported in censored form 

 

 
†An example of a typical 5-point Likert scale is: strongly disagree, disagree, neutral (undecided), agree, strongly agree 
‡http://www.heritagehealthprize.com 
§We excluded zero counts which represent patients who were not admitted at all. The latter consist of nearly 125,000 
records.  
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The remainder of the paper is organized as follows: In Section 2 we introduce a mixture of truncated CMP 
distributions for capturing bimodality, and describe the EM algorithm for estimating the five CMP mixture 
parameters. Section 3 illustrates our proposed methodology by applying it to simulated and real data 
examples. We conclude the paper with some discussions in Section 4. 

2. A Mixture of Truncated CMP Distributions 

2.1. The CMP Distribution 

The Conway-Maxwell-Poisson distribution is a generalization of the Poisson distribution obtained by 
introducing an additional parameter ν which can take any non-negative real value and accounts for the cases 
of over and under dispersion in the data. The distribution was briefly introduced by Conway and Maxwell in 
1962 for modeling queuing systems with state-dependent service rates. Non-Poisson data sets are commonly 
observed these days. Over-dispersion is often found in sales data, motor vehicle crashes counts, etc. Under-
dispersion is often found in data on word length, airfreight breakages, etc. (see [5] for a survey of 
applications).  The statistical properties of the CMP distribution, as well as methods for estimating its 
parameters were established by [4]. Various CMP-based models have since been published, including CMP 
regression models (classic and Bayesian approaches), cure-rate models, and more. The various 
methodological developments take advantage of the flexibility of the CMP distribution in capturing under- 
and over-dispersion, and applications have shown its usefulness in such cases. However, to the best of our 
knowledge, there has not been an attempt to fit bimodal count distributions using the CMP. The use of CMP 
mixtures is advantageous compared to Poisson mixtures, as it allows the combination of data with different 
dispersion levels with a resulting bimodal distribution. 

If X is a random variable from a CMP distribution with parameters λ and ν, its pmf is given by  
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1. If ν < 1 successive ratios decrease at a slower rate compared to the Poisson distribution giving rise to 
a longer tail. This corresponds to the case of over-dispersion. The reverse occurs for the case of 
under-dispersion. 

2. This distribution is a generalization of a number of discrete distributions: 
 For ν=0 and λ < 1, this is a geometric distribution with parameter (1-λ). 
 For ν=1, this is the Poisson distribution with parameter λ. 
 For ν  ∞, this is a Bernoulli distribution with parameter ఒ

ଵାఒ
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We modify the CMP distribution to the truncated scenario considered in this paper. For data in the range 
t,t+1,t+2,…,T, we shift the distribution from 0 to t and then truncate values above T.  For example, for data 
from a 10-point Likert scale, the truncated CMP pmf is given by: 
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2.2. CMP Mixtures 

The principal objective of this paper is to model bimodality in count data. Since both the Poisson and CMP 
can only capture unimodal distributions, for capturing bimodality we resort to mixtures. The standard 
technique for fitting a mixture distribution is to employ the Expectation-Maximization (EM) algorithm [1]. 
For example, in case of Poisson mixtures, one assumes that the underlying distribution is a mixture of two 
Poisson component distributions with unknown parameters while the mixing parameter p is also unknown. 
Further it is also assumed that there is a hidden variable with a Bernoulli(p) distribution, which determines 
from which component the data is coming from. Starting with some initial values of the unknown parameters, 
in the first step (E-step) of the algorithm, the conditional expectations of the missing hidden variables are 
calculated. Then in the second step (M-step), parameters are estimated by maximizing the full likelihood 
(where the values of the hidden variables are replaced with the expected values calculated in the E-step). 
Using these new estimates, the E-step is repeated, and iteratively both steps are continued until convergence.  

Let the distribution of a random variable X be a mixture of CMP(ߣଵ, ,ଶߣ)ଵ) and CMPߥ  ଶ) with probabilityߥ
p of being generated from the first CMP distribution. We also assume that each CMP is truncated to the 
interval [1,2,…, T]. If ଵ݂(ݔ) and ଶ݂(ݔ) are the pmfs of the two CMP distributions respectively, the pmf of X is  

 
(ݔ)݂ =   ଵ݂(ݔ) +  (1 − ( ଶ݂(ݔ)  ݂ݔ ݎ = 1,2, … , ܶ                   (3) 
 
If ଵܺ, ܺଶ, … , ܺare iid random variables from the above mixture of two CMP distributions, their joint 

likelihood function is given by  
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We would like to find the estimates (̂, ଵߣ , ଵෝߥ , ,ଶߣ ଶෝߥ ) by maximizing the likelihood function. However, due 

to the non-linear structure of the likelihood function, differentiating it with respect to each of the parameters 
and equating the partial derivatives to zero does not yield closed form solutions for any of the parameters. We 
therefore adapt an alternative procedure for representing the likelihood function.  

Define a new set of random variables ܻ as follows: 
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Then the likelihood and log-likelihood functions can be written as 
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From here we get a closed form solution for ̂ by differentiation: 
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The problem lies in the fact that the yi’s are unknown. We therefore use the EM algorithm technique. 
 
E Step:  Here we replace the yi’s with their conditional expected value 

 

పܻ෩ ∶= )ܧ ܻ|ܺ = (ݔ = భ(௫)
భ(௫)ା (ଵି)మ(௫).                                (6) 

 
M Step: Thus, by replacing the unobserved yi’s in the E-step, we get 
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For the other parameters, none of the equations ఋ
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= 0, ఋ
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solutions. We propose an iterative technique for obtaining the remaining estimates.  
As an estimate of p is easy to obtain, we only maximize the likelihood over the remaining four parameters 

and then iterate. Plugging in the value of ̂, the likelihood function L becomes a function of ߣଵ, ଵߥ , ,ଶߣ ଶߥ . 
The idea is to use the grid search technique to maximize L. In this technique, we divide the parameter 

space into a grid, evaluate the function at each grid point and find the grid point where the maximum is 
obtained. Then, a neighbourhood of this grid point is further divided into finer areas and the same procedure is 
repeated until convergence. We continue until the grid spacing is sufficiently small. Since we have four 
parameters to estimate, carrying out a grid search for all of them simultaneously is computationally infeasible. 
We therefore propose a two-step algorithm. First, we fix any two of the parameters at some initial value and 
carry out grid search for the remaining two. Then, fixing the values of these estimated parameters in the first 
step, we carry out grid search for the first two. 

From simulation studies we observed that fixing the ݏ′ߣ and obtaining ̂ݏ′ߥ and then carrying out a grid 
search for estimating the λ’s reduces the run time of the algorithm.  

2.3. Model Estimation 

If the empirical distribution exhibits a single peak, p is set to zero and a single CMP is estimated using 
ordinary maximum likelihood estimation [3] with adjustment for the truncation. Otherwise if the empirical 
distribution shows two peaks, we execute the following steps. 

2.3.1. Initialization 
Fit a Poisson mixture. If the resulting estimates of 1, 2 are sufficiently different, use these three estimates 

as the initial values for p, 1, and 2 and set the initial 1=2=1. 
If the estimated Poisson mixture fails to identify a mixture of different distributions, that is, when 1 and 2 

are very close, then use the estimated p as the initial mixing probability, but initialize ’s by fixing them at the 
two peaks of the empirical distribution and set the initial 1=2=1. 

2.3.2. Iterations 
After fixing the five parameters at initial values, the two-step optimization performs the following 

sequence: 
For a given p, 
1. Optimize the likelihood for ’s, fixing p, 1 and 2 using a grid search.  
2. The optimal 1, 2 are then fixed (along with p). A grid search finds the optimal 1, 2. 
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3. Repeat steps 1 and 2 until some convergence stopping rule is reached. 

Once the ’s and ’s are estimated, go back to estimate p. 
Finally, the E step and M step are run until convergence. 

3. Application to Simulated and Real Data 

To illustrate and evaluate our CMP mixture approach and to compare it to simpler Poisson mixtures, we 
simulated bimodal discrete data over a truncated region, similar to the example of real data in Section 1.1.  

3.1. Simulated Bimodal Data on 10-point Scale 

This is an example of a mixture of two CMP distributions on a 10-point scale, one under-dispersed 
() and the other over-dispersed (), with mixing parameter p=0.3. Figure 2 shows the 
empirical distribution for 100 observations simulated from this distribution. We see a mode at 1 and another at 
10. We first fit a Poisson mixture, resulting in the fit shown in Table 1 and Figure 2. As can be seen, the 
Poisson mixture properly captures the two modes, but their peak magnitudes are incorrectly flipped (thereby 
identifying the highest peak at 1). It also does not capture the single dip at 3, but rather estimates a longer dip 
throughout 3, 4 and 5. Finally, the estimated overall U-shape is also distorted.  

We then fit a CMP mixture using the algorithm described in Section 4. The results are shown in Table 1 
and Figure 2. The fit appears satisfactory in terms of correctly capturing the two modes as well as the 
magnitudes of the peaks and dip. Note that the AIC statistic is very close to that from the Poisson mixture, yet 
the two models are visibly very different in terms of capturing modes, magnitudes and the overall shape. 

Although the good fit of the CMP mixture might not be surprising (because the data were generated from a 
CMP mixture), it is reassuring that the algorithm converges to a solution with good fit. We also note that the 
estimated parameters are close to the generating parameters. Finally, we note that the runtime was about a 
minute.   

Table 1:Simulated 10-point data (n=100) and expected counts from Poisson and CMP mixtures 

Value Simulated Data Poisson Mixture CMP Mixture 
1 22 36 22 
2 2 7 2 
3 0 1 0 
4 1 1 1 
5 1 1 2 
6 4 3 4 
7 7 6 7 
8 15 10 13 
9 22 15 20 
10 26 20 29 
Estimates    
p 0.3 0.32 0.24 
 1,8 0.41, 13.58 1.13, 9.00 
 3, 0.7  3.75, 0.8 
First Mode 1 1 1 
Second Mode 10 10 10 
AIC  370.6 370.0 
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Figure 2: Fit of estimated Poisson mixture (p=0.3221, 1=0.4094, 2=13.5844) and CMP mixture (p=0.24, 1=1.1, 1=3.75, 2=9, 2=0.8) 

3.2. Real Data Example 

We return to the example from Section  1.1Error! Reference source not found.. The results of fitting a 
Poisson mixture and CMP mixture are shown in Table 2 and Figure 3. 

Table 2: Observed and fitted counts for Heritage Insurance Competition data 

# Days in hospital Data Poisson Mixture CMP Mixture 
1 9299 3284 7410 
2 4548 2994 5567 
3 2882 1860 3704 
4 1819 976 2260 
5 1093 641 1290 
6 660 713 698 
7 474 994 361 
8 316 1327 183 
9 263 1600 96 
10 209 1742 62 
11 145 1725 62 
12 135 1566 89 
13 111 1313 142 
14 65 1021 227 
15+ 479 742 347 
Estimates 
p  0.4132 0.96 
  1.8156, 10.8937 0.93, 13.4 
   0.3, 0.8 
First Mode 1 1 1 
Second Mode 15+ 10 15+ 
Dip Location 14 5 10-11 
Log likelihood  -5.6x10^4 -4.25x10^4 
AIC  112006 85010 
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Figure 3: Observed and fitted Poisson and CMP mixture counts for Heritage Insurance Competition data 

In this example, the two likelihood-based measures are very similar but the CMP fit is visibly much better. 
The CMP mixture correctly identifies the two modes and the magnitude of their frequencies. In contrast, the 
Poisson mixture not only misses the mode locations, but also the magnitude of inaccuracy for those 
frequencies is quite high. 

4. Discussions 

Discrete data often exhibit bimodality that is difficult to model with standard distributions. A natural 
choice would be a mixture of two (or more) Poisson distributions. However due to the presence of under- or 
over-dispersion often the Poisson mixture appears to be inadequate. The more general CMP distribution can 
capture under- or over-dispersion in the data. Therefore a mixture of CMP distributions (if necessary, properly 
truncated) may be appropriate to model such data.  

The usual EM algorithm for fitting mixtures of distribution can be employed in this scenario. However, as 
the CMP distribution has an additional parameter (compared to the Poisson distribution), the maximization of 
the likelihood is nontrivial. In the absence of closed form solutions, iterative numerical algorithms are used 
for this purpose. An innovative two-step optimization with more than one possible initialization of the 
parameters has been suggested to ensure and speed up the convergence of the resulting algorithm. In our 
experiments, the proposed algorithm for fitting CMP mixture models take less than two minutes even for very 
large datasets (such as the Example 1.1: Heritage Competition dataset). Further reduction in runtime may be 
possible by invoking more efficient optimization techniques. 

References 

[1] Dempster, A. P., Laird, N. M., Rubin, D. B., 1977, Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the 
Royal Statistical Society, Series B 39, p. 1. 

[2] Hilbe, J. M..2011. Negative Binomial Regression, 2nd edition, Cambridge University Press 
[3] McLachlan, G. J., 1997. On the EM algorithm for overdispersed count data. Statistical Methods in Medical Research 6, p. 76. 
[4] Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S., Boatwright, P., 2005 A useful distribution for fitting discrete data: revival of the 

Conway–Maxwell–Poisson distribution. Journal of The Royal Statistical Society, Series C 54, p. 127.  
[5] Sellers, K. F., Borle, S., Shmueli, G., 2012 The CMP Model for Count Data: A Survey of Methods and Applications. Applied 

Stochastic Models in Business and Industry 28, p. 104. 
 


